
Consistent Mesh Parameterizations

Emil Praun
Princeton University

Wim Sweldens
Bell Labs

Peter Schröder
Bell Labs

+ + + + + + + =

Figure 1: When given a set of head models an obvious shape to compute is their average. In general the connectivity and sampling patterns of
the models are different and computing the average is non trivial. After computing consistent mesh parameterizations (red patch boundaries)
and remeshing, all models have the same connectivity and sampling pattern so computing the average becomes trivial.

Abstract
A basic element of Digital Geometry Processing algorithms is the
establishment of a smooth parameterization for a given model. In
this paper we propose an algorithm which establishes parameteriza-
tions for a set of models. The parameterizations are called consis-
tent because they share the same base domain and respect features.
They give immediate correspondences between models and allow
remeshes with the same connectivity. Such remeshes form the ba-
sis for a large class of algorithms, including principal component
analysis, wavelet transforms, detail and texture transfer between
models, and n-way shape blending. We demonstrate the versatil-
ity of our algorithm with a number of examples.

1 Introduction
Digital Geometry Processing (DGP) is the field concerned with
the construction of signal processing style algorithms for geometry.
Due to the non-Euclidean nature of surface geometry the construc-
tion of DGP algorithms is fundamentally more difficult than the
construction of classical signal processing algorithms. Sound (1D),
images (2D), and video (3D), are readily parameterized onto a Eu-
clidean space, e.g., an image is given by the irradiance function over
a section of the plane. In addition images are always sampled using
a Cartesian grid. As a result, simple operations such as averaging
two images or computing the norm of their difference are easy. The
same is not true for geometry. There are two causes for this: (a) the
non-Euclidean nature of geometry and (b) the generally differing
sampling patterns and connectivity of meshes describing geome-
try. DGP algorithms involving multiple models require a common
parameterization and a common sampling pattern. Computing a
global parameterization and remeshing for a single model is a dif-
ficult problem in itself and has received considerable attention as
it is a fundamental step in many algorithms from texture mapping
and shape blending to physical simulation, compression, and data
analysis.

In this paper we will go beyond the usual parameterization prob-
lem and compute parameterizations for a group of models. We call
a set of parameterizations consistent when they share the same base
domain and respect features. Note that this implies that all models
need to have the same genus. In this paper we will focus on the
genus zero, orientable manifold case, although many of the tech-
niques carry over to higher genus. Consider for example a set of
head scans; we say that their parameterizations are consistent if
they all use the same base domain, such as a low polygon-count
head model, and if all parameterizations respect previously defined
head features such as eyes, nose, mouth, etc.

Consistent parameterizations give immediate point correspon-
dences between all the models and allow us to remesh each model
with the same connectivity. Therefore, every vertex in one mesh
has a unique corresponding vertex in every other mesh. This in turn
enables a whole series of applications ranging from n-way shape
blending to the transfer of attributes, such as textures, details, or
animation controls, from one model to a whole set of models. Addi-
tionally a number of new geometry processing algorithms which in-
volve many models simultaneously, e.g., principal component com-
putations, become possible for the first time. This is illustrated in
Figure 2: multiple models, which may be geometrically quite dis-
similar, get parameterized onto the same base domain and remeshed
with identical connectivity for subsequent DGP processing.

One problem with existing parameterization algorithms is that
even two very similar models can easily end up with different base
domains and hence inconsistent parameterizations. There is no fun-
damental reason for this and our algorithm overcomes this problem.

For our method, the base domain may be user specified or one
can be found automatically, for example, by applying an existing
method to one of the models. Each of the models needs to have
features outlined and annotated either manually or through auto-
matic feature identification. Once our algorithm computes consis-
tent parameterizations, all models can be remeshed using identi-
cal connectivity. Because of their obvious advantages such as sim-
ple data structures, easy filtering, wavelet transforms, and excellent
compressibility, we consider here only semi-regular meshes, i.e,
meshes formed by recursive (possibly adaptive) regular refinement
from some base domain.

Contributions Given a base domain and a set of orientable
genus zero models with identified features, we present an algorithm
that computes a consistent parameterization for all of them. This is
done by tracing on each mesh a net of curves that is provably topo-
logically equivalent to the connectivity of the base domain. The
models are not required to be geometrically close. Subsequently
we use the parameterizations to compute remeshes with identical
connectivity and give examples of how such meshes can be used in
a variety of DGP applications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACM SIGGRAPH 2001, 12-17 August 2001, Los Angeles, CA, USA
© 2001 ACM 1-58113-374-X/01/08...$5.00

Figure 2: Multiple models are parameterized with respect to the
same base domain using feature point (and edge) mappings. Sub-
sequent remeshes ensures consistent sampling patterns for down-
stream DGP applications.

Related Work Parameterization algorithms typically start with
a given model in the form of a triangle mesh with irregular con-
nectivity and construct a set of patches or a semi-regular mesh on
output (note that the two are equivalent). Eck and co-workers [2]
produced a semi-regular mesh fully automatically, while Krish-
namurthy and Levoy [8] gave the user responsibility for laying
out a set of NURBS patch boundaries. In contrast, Lee and co-
workers [10] employed mesh simplification with constraints to ac-
commodate any user supplied data in the construction of the param-
eterization during an otherwise fully automatic process.

None of these approaches considered building parameterizations
for multiple models simultaneously. This problem arises naturally
in the context of morphing when a mapping correspondence be-
tween two models is the explicit goal. Lee and co-workers [9] use
their previous MAPS work to independently establish parameter-
izations for two models followed by solving the correspondence
problem on the base domains. The two parameterizations are not
consistent as the base domains are different. This creates the need
for a common “meta-mesh” able to realize the simultaneous param-
eterization of the two original models. Unfortunately this algorithm
does not scale, since the meta-mesh typically has much higher com-
plexity (a reported 10×) than either original mesh. Additionally it
is not clear how it might generalize to n-way simultaneous param-
eterizations.

Marschner and co-workers [11] confront a problem very close to
our setting when they seek to animate a number of different faces

via a single, prototype patch layout. Since their prototype face, i.e.,
the embedding of the prototype layout, is already very close to a
given face they report a simple least squares fitting procedure to
work well. In contrast we aim to concurrently parameterize models
which may be fairly different geometrically, for example a horse
and a human body. In that case there is no embedding of some
prototype layout that is simultaneously close to both shapes. Hence
a simple least squares matching procedure will likely not succeed.

2 Algorithms
We begin by establishing terminology. A triangle mesh M is a
pair (P ,K), where P is a set of N point positions P = {pi =
(xi, yi, zi) ∈ R3 | 1 ≤ i ≤ N}, and K is an abstract sim-
plicial complex which contains all the topological, i.e., adjacency
information. The complex K is a set of subsets of {1, . . . , N}.
These subsets come in three types: vertices {i}, edges {i, j},
and faces {i, j, k}. Two vertices {i} and {j} are neighbors if
{i, j} ∈ K. The 1-ring neighbors of a vertex {i} form a set
V(i) = {{j} | {i, j} ∈ K}.

As argued above we will work with semi-regular meshes. For
concreteness we will further assume that such meshes are built
by repeated triangle quadrisection starting from a coarse irregu-
lar mesh N0 = (Q0,L0) with the finer meshes denoted Nj =
(Qj ,Lj). Nothing in the method prevents the use of quadrilater-
als instead of triangles or regular refinement procedures other than
quadrisection.

A typical remeshing procedure starts from an irregular input
mesh M and computes a base domain with connectivity L0 as well
as a bijective mapping between the base domain and M. This map-
ping is subsequently used to build the remeshes Nj for j > 0. Note
that this can be done in an adaptive fashion if needed.

In our setting, we are given a set of meshes S = {Mm | 0 ≤
m < M}. The purpose is to compute a semi-regular remeshing
for all of them with a common base domain connectivity L0 (see
Figure 2 top). We also need to ensure that the individual parame-
terizations respect features as desired. As an example, consider a
set of heads. Typically one would seek mappings that will respect
features such as eyes, nose, ears, etc.

For convenience, we treat the common base domain as a special
mesh B = (P ,L0). Since this base domain does not have associ-
ated geometry, its vertex locations do not need to be in R3. To each
of the F feature vertices bf we simply give canonical locations in
RF . Let bf be the f -th basis vector, i.e., the f -th component is one
and all others are zero.

Basic Setup Assume we have identified, either by hand or
through some feature detection algorithm, F feature points in each
of the meshes, with pm

f denoting the f -th feature point in the m-th
mesh1. Furthermore the connectivity L0 between the feature points
is also given. Each triangle in L0 corresponds to a patch on each
of the meshes Mm, while edges in L0 correspond to patch bound-
aries (middle part of Figure 2). We will refer to the layout of patch
boundaries on the meshes Mm as “nets.” The task now is to trace
these patch boundaries on each of the meshes Mm between the
points pm

f in a manner such that the resulting net is (1) topologi-
cally equivalent to L0 and (2) outlines fair patches. The first con-
straint is easy to state and our algorithm guarantees that it is satis-
fied (Section 2.1). The second condition is more difficult to capture
in an objective criterion and our algorithm uses a number of heuris-
tics that produce fair patches in practice (Section 2.2). Once we
have computed a net, the surface is parameterized using Normal
Meshes [4], but without necessarily imposing the normality con-
straint.

1We only discuss feature points although feature lines can be treated
similarly. If the features are points inside a triangle, the triangle is split to
produce a feature vertex.

2.1 Topologically Equivalent Patch Boundaries
Given that both B and M are assumed to be orientable manifolds,
two conditions need to be satisfied for the patch boundaries to be
topologically equivalent with L0:

1. Two patch boundaries may only intersect at a feature vertex.
2. Each feature vertex has a consistent cyclical ordering of its

edges in both B and M [1].

It is tempting to simply trace shortest paths on M for each edge
in L0 (e.g., by employing a standard “brush fire” algorithm [7]).
Unfortunately this can lead to intersecting patch boundaries and
may not respect the vertex edge ordering (see Figures 3 and 7).
Therefore we use a restricted brush fire algorithm to trace a path

a

b
c

d a

b
c

d

Figure 3: Example patch boundaries of a sphere with four fully
connected feature vertices. A naı̈ve shortest path strategy does not
lead to a topologically correct net (left), violating both the crossing
property and the vertex edge ordering. On the right is a topologi-
cally correct net.

between two feature vertices in a topologically equivalent manner.
Patch boundary crossings are avoided by making sure that the brush
fire never crosses a previously traced path. Once a feature vertex is
incident to at least two traced paths, we also have to make sure that
any new paths respect the cyclical ordering of edges at that ver-
tex, i.e., new paths need to be attached in the appropriate sector at
both vertices. This is ensured by starting the brush fire in the cor-
rect sector at the source and only terminating when it reaches the
destination in the correct sector, see Figure 4.

i

j

i

j

Figure 4: To find a curve for edge {i, j} ∈ L0 a brush fire is started
at {i}. When it reaches {j} a check is performed to see whether it
reaches {j} in the correct sector (not true in the example shown
on the left). The brush fire continues and will eventually reach {j}
in the correct sector defining a topologically equivalent curve from
{i} to {j} (right side). Already drawn paths act as fire walls during
the brush fire propagation.

a

d c
e

b

e

a

d c

b

Additionally, the order in which paths are traced
is important. For a random ordering, even the re-
stricted brush fire algorithm does not guarantee ter-
mination. For example, it is possible to “encircle”
a vertex with paths, making it unreachable. In the
adjacent figure, the top diagram shows the desired
connectivity. In cannot be achieved, however, in the
lower setup, since the vertex {e} has been encircled
in the patch {a, b, d}, and cannot be linked with {c}.

To solve the encircling problem, we do not trace any paths that
would complete cycles until a spanning tree of L0 has been traced.
This guarantees that no vertex can be encircled during tree build-
ing. Once we have a tree, we can complete the net by adding the

remaining patch boundaries in any order. To prove this claim we
only need to show that the completion algorithm cannot get stuck.

Proof of Correctness We prove by contradiction that comple-
tion of the net after building a spanning tree always terminates and
produces a topologically equivalent net. Assume that one of the
invocations of the brush fire algorithm, say for edge {a, b} ∈ L0,
could not complete; let this be the first such occurrence. This im-
plies the existence of a cycle C of paths on the model separating
{a} from {b} (i.e., the fire gets caught). Given that the model and
base domain are both genus zero, C also splits the base domain in
two regions. Since the set of already traced curves contains a span-
ning tree of L0, it forms a connected graph, and therefore must con-
tain a path P from {a} to {b}. Since {a} and {b} are in different
model regions, P and the cycle C have to cross. Curves can only
cross at vertices, so P and C must cross at a subset of the vertices
of P . Follow P vertex by vertex and at every intersection vertex,
record whether the base domain or model region change. Given
that neighborhood ordering has to be the same on the base domain
and model at each vertex, region changes have to occur simultane-
ously on the base domain and model. Since {a} and {b} are in the
same region on the base domain ({a, b} ∈ L0), they have to be
in the same region on the model. This contradicts our assumption
and proves our claim: we are assured that the brush fire can always
terminate in the correct sector and the net can be completed.

2.2 Tracing Fair Boundary Curves
The above algorithm guarantees a topologically equivalent mapping
of the base domain to the desired model, however, it could still be
greatly distorted. We now present a modified algorithm that has the
same correctness guarantee and attempts to ensure a fair mapping.
In general we want the following quality criteria:

1. equal distribution of surface area amongst patches;
2. smooth patch boundaries;
3. fair patch boundaries; in particular they should not “swirl.”

The first two criteria are easy to understand and intuitively clear
and can be achieved through relaxation [3]. The third one is more
difficult. In essence we want to avoid unnecessary “winding” or
“swirling” of the curves. The swirling phenomenon leads to partic-
ularly nasty patches that cannot be fixed through relaxation. A sim-
ple example of the “swirl” operator, a bijective map from a mesh
onto itself is show in Figure 5.

a

b

ab

b

a

Figure 5: An example of the swirl operator: b turns around a push-
ing patch boundaries ahead of itself until b comes back to its orig-
inal position (left to right) and a topologically equivalent arrange-
ment.

Clearly we want to avoid swirling and choose the least distorted
or fairest amongst all topologically equivalent nets. Such a net can
be defined as the one which achieves a global minimum of the fair-
ness functional

X
C∈N

Z
s∈C

‖g′‖ + ‖g′′‖ ds,

where the summation is over all curves C in the net N, and g
is the arc length parameterization of C. This leads to a non-
convex, mixed discrete-continuous global optimization problem,
which seems to be intractable at this point. Instead we exploit a
number of heuristics that do not require a global solve and lead to
good patch layouts in practice.

We discuss each of these algorithm modifications in turn. Note
that none impact the correctness guarantee.

Parameterization In preparation for path tracing we compute
a parameterization of the model. Each vertex of the mesh M is
parameterized onto the base domain B. The parameter value of
a vertex {i} is πi, which is an F -vector. The feature points pf

are already associated with the coarsest level vertices bf : πf =
bf . Parameter values for the other vertices of M are computed by
solving a linear system, using conjugate gradients:

πi =
X

{j}∈V(i)

wijπj .

The weights wij are computed using Floater’s shape-preserving
scheme [3]. As a result wij ≥ 0 and their sum over j equals 1
for each i, implying that the πi are convex combinations of the πj .
Taken together with the fact that the boundary conditions πf = bf

for the linear system are F -vectors with one non-zero component
equal to 1, the components of each of the computed πi will all be
non-negative and sum to 1.

Tracing Curves Assume we want to trace the curve between
feature points f and f ′. The main idea is to set an objective function
and trace a curve along the local minimum of the objective function.
The objective function at a vertex {j} is given by

Kj = 1 − πj [f] − πj [f
′],

where [f] denotes the f -th component of an F -vector. The algo-
rithm is the same as before but only with Kj as the priority in the
queue. Clearly Kf = Kf ′ = 0 while 0 < Kj ≤ 1 for other
vertices j. Since the sum of πj’s components is 1, our objective
function tries to seek f and f′, minimizing the influence of other
feature vertices, and making the traced curves repel each other. This
helps avoid swirling.

Priority Queues and Spanning Tree Construction For all
the edges of L0 we first trace corresponding tentative curves us-
ing the constrained brush fire algorithm described earlier. The con-
straints are given by the curves that have already been inserted into
the net (initially, none). We record the tentative length and path
of these curves and insert them into the priority queue based on
length. Upon removal from the priority queue—during spanning
tree construction—we check to see if the recorded (tentative) path is
still valid and does not violate constraints provided by other curves
recently inserted into the net. If it is not topologically valid, we re-
trace the curve and update its priority. If it is topologically valid, we
run the swirl detector (Figure 6) for both adjacent L0 triangles. If at
least one fails, we put the edge back into the queue with a penalty.
If both pass we add the curve to the net.

Swirl Detection Consider tracing a path for {a, b} ∈ L0 (Fig-
ure 6) with {a, b, c} and {a, d, b} in L0. To detect a possible swirl,
we parametrically trace a line from {c} to the closest point on the
image of {a, b}, i.e., the first point that the brush fire meets on the
path from {a} to {b}. This path should arrive on the left side of
the oriented path from {a} to {b} (Figure 6, right). If it arrives on
the wrong side, then the mapping of the triangle {a, b, c} appears
flipped. Consequently, one of the traced edges {a, b}, {b, c} or
{c, a} would have to be routed around an opposing vertex (the fig-
ure shows {c, a} “taking the detour”). These three configurations
are equivalent to each other under a sequence of swirls. We can de-
cide which is the best configuration only after curves linking {a},
{b}, and {c} to the rest of the net have been added. Therefore, we
postpone tracing of {a, b} by introducing it back into the priority
queue with a penalty. The same test is applied starting from {d}.

Complete Net After the spanning tree has been constructed we
complete the net as before except that a priority queue based on
length is used.

c

b a

c

a b

Figure 6: Swirl detector: If the shortest path from {c} to {a, b}
falls on the wrong side (left) the triangle {a, b, c} is considered
flipped and may lead to swirls. Adding the path {a, b} to the net is
postponed. On the right the trace reaches {a, b} on the correct side
and the path is accepted.

Edge Straightening After tracing the patch boundaries we ob-
tain a net of curves topologically equivalent to L0. These curves
are composed of segments residing on the mesh edges. Next we
straighten the curves, allowing them to cross the interior of trian-
gles, and ensuring that all patches have approximately equal area.

For all feature vertices {i} all incident curves {i, j} are straight-
ened in a single operation. First, gather all triangles on the mesh
which are interior to the image of all {i, j, k} ∈ L0. This submesh
of the model is parameterized onto a convex region in the plane
as follows. Map the feature vertices {j} belonging to V(i) to the
vertices of a planar n-gon inscribed in the unit circle. The angles
subtended by each side {j, k} of the n-gon are proportional to the
length of the corresponding net curves. Boundary curves {j, k}
are mapped to straight lines, assigning coordinates for the interior
curve points as convex combinations of the curve endpoints. Fi-
nally, we solve for the coordinates of patch interior points using
Floater’s scheme. Once we have this 2D parameterization we can
replace the curves {i, j} incident to {i}, by mapping the respective
2D line segments back onto the 3D model. In general these lines
will cut across existing triangles which must be split accordingly
to maintain a valid triangulation. The straightening process can be
iterated, although in practice this did not seem necessary.

Implementation Note For efficiency, we run our net tracing
algorithm on a simplified version of the model and later transfer the
net to the original model. For the examples in this paper, we take a
simplified model with approximately one thousand vertices.

During path tracing we must allow multiple paths to traverse the
same edge and impose an ordering on them. We do this with a spe-
cial “lane” data structure which allows several paths to pass through
the same mesh edge, while maintaining a conceptual epsilon in-
terval separation between them. In effect an edge is treated as a
highway with many ordered lanes. This requires a modification of
the queue in the brush fire graph traversal. Ordinarily this queue
controls which vertex is visited next. In our setting we must also
maintain a notion of which lane the fire is traveling on to properly
respect fire walls. Thus, the priority queue maintains not just ver-
tices but vertices and their associated lanes.

Non-Feature Base Domain Vertices So far we assumed that
all vertices in the base domain are features and have correspon-
dences with vertices in the meshes Mm ∈ S . However, in some
applications not all base domain vertices are features. A detailed
face animation model can have up to a thousand vertices, but only
about a hundred feature vertices. We can handle this case in two
stages. Say, the base domain B has V vertices, F of which are fea-
tures vertices and B − F are not. In the first stage, we construct a
smaller base domain B0 by removing the B − F non feature ver-
tices. We now apply our algorithm with B0 as the base domain
and compute consistent parameterizations for the meshes Mm as
well as the original base domain B. (Note that their is no need for
remeshing at this point.) Next we can use the resulting bijection
between B and the meshes Mm to place the remaining V −F ver-
tices of B on the meshes Mm. Using these new correspondences,

Figure 7: Patch boundary curves from the star connectivity mapped
onto the horse. The star has one vertex on its back connecting to all
other vertices. On the left the naı̈ve algorithm. Note how several
curves intersect. The white curves which are supposed to be on the
belly end up using the shortest path across the back of the horse.
On the right the result of our algorithm, which properly traces the
white curves across the chest of the horse.

we can run our algorithm again with B as base domain and compute
consistent parameterizations and remeshes for the Mm meshes.

2.3 Examples

Figure 7 shows the layout of a very simple star-like patch network
onto the horse. On the left is the result of the naı̈ve curve tracing
algorithm. Several curves intersect and others pass on the wrong
side of the horse. On the right is the result of the modified algo-
rithm. This example also shows that we can transfer patch layouts
between very dissimilar objects.

Figure 8 shows a more realistic example with a more detailed
patch layout which is shown on the top left. It is transferred to a
human, a horse, and a cow.

Figure 8: Another mapping of a patch layout (top left) applied onto
the human figure, the horse, and the cow models.

All the examples presented here take about the same time to pro-
cess. On a 900Mhz Pentium III machine, tracing the curve net on
the coarse mesh (1000 triangles) takes around 5 seconds, transfer-
ring to the original mesh (100K triangles) takes 2 seconds, smooth-
ing 1.5 minutes, and remeshing to 43K triangles 6 minutes. Se-
lecting 54 feature vertices on the human figure, for example, takes
around 10 minutes of user time.

3 Applications
Once a consistent parameterization has been established for several
meshes, we can use the resulting correspondences for many differ-
ent DGP tasks. Here we sketch a few exemplary applications to
indicate the variety of possible algorithms.

Principal Mesh Components This application is motivated
by the use of principal component analysis for images. For ex-
ample, given a number of images of faces that are aligned and
illumination-equalized one can compute “eigenfaces,” i.e., a set
of orthogonal images which are eigenvectors of the variance/co-
variance matrix of the set of face images [12]. We can perform a
similar computation with meshes. Figure 1 shows a number of head
meshes that are all aligned through rigid body motion and scaled
to equal volume. The rightmost mesh represents the mean. Fig-
ure 9 shows the three main eigenheads, each visualized in a sum
with the mean. Each mesh in the original set can be characterized

Figure 9: The first three principal component meshes for the heads
in Figure 1. The first eigenhead seems to indicate hair on the front
of the skull, the second hair on the back of the skull, and the third
whether the face carries a smile.

by its eigendecomposition. Such feature vectors can be useful in
compression, recognition or database search. Figure 10 shows how
eigenheads can be used in filtering applications. The middle im-
age shows the result of tripling the third eigenmode of the leftmost
head. The right image is the result of doubling all but the mean
eigenmode.

Figure 10: Left: original head. Middle: the third eigenmode was
tripled. Right: all the eigenmodes (except the mean) were doubled.

Transfer of Textures Given the vertex-wise correspondence
between two meshes it is trivial to transfer attributes from one
model to another through direct parametric mapping. Figure 11
shows a simple example. The texture of one human body scan is ap-
plied to another human body scan and, for fun, to the horse model.

Transfer of Wavelet Details A more interesting transfer of at-
tribute data can be performed in the wavelet domain. For example,
one can compute a wavelet transform of two models with consistent
parameterizations and then perform scale dependent blending. To
illustrate this idea we combine the base domain (coarsest level scale
coefficients or lowest frequencies) of one model with the wavelet
coefficients (higher frequencies) from another model. For this pro-
cedure Loop-based wavelets as described by [6] were used. Fig-
ure 12 shows the result of applying the cow wavelet coefficients to

Figure 11: Texture transfer from one model to others.

the horse coarsest level control mesh and vice versa. Such map-
pings can also be the basis for morphs with scheduled transitions in
the scale domain (similar to scheduled Fourier morphing [5]).

Figure 12: Application of details from one model to the coarsest
control mesh of another (cow onto horse and vice versa).

Shape Blending Establishing a mapping between different
shapes, which may be quite dissimilar, is the first step in any morph-
ing application. Our algorithm can establish the necessary mapping
even when there are multiple models to be blended. Consequently
n-way blends of free-form models are greatly facilitated. Figure 13
shows an whimsical example of various affine combinations of a
cow, a horse, and a human figure.

Figure 13: Affine combinations of the human figure, cow, and horse:
a) 50% human, 25% horse, 25% cow; b) 50% cow, 25% human,
25% horse; c) 50% horse, 25% human, 25% cow.

4 Conclusion and Future Work
We have presented an algorithm for the simultaneous, consistent
parameterization of multiple shapes. The algorithm is guaranteed to
lay out patch boundaries in a topologically equivalent way and we
have developed a suite of heuristics to ensure that the layout is fair.
Such a parameterization forms the basis of consistent semi-regular
samplings of the input shapes which in turn form the foundation for
a wide variety of Digital Geometry Processing algorithms. A few
examples of such algorithms were presented.

As digital geometry becomes more widespread the need for a ge-
ometry processing toolbox of efficient algorithms with a well devel-
oped mathematical apparatus continues to increase. Construction of

“good” parameterizations is the first step to enable a whole host of
DGP algorithms. Interesting areas for future study include:
• extending the method to handle higher-genus models, bound-

aries, missing feature point specifications, and additional con-
straints;

• applications in animation and transfer of animation controls
from one shape to another;

• computing principal components for a large database of models
and using them for search and recognition;

• code design for efficient compression of multiple shapes;
• consistent watermarking and authentication.

Acknowledgments The research reported here was supported
in part by NSF (DMS-9874082, DMS-9872890, ACI-9982273),
Alias|Wavefront, Microsoft, Intel, Lucent Technologies, and the
Packard Foundation. Special thanks to Matthieu Ferrant and Silvain
Jaume for discussions motivating this research, the TigGraph re-
viewers for feedback, Adam Finkelstein for support, Tony DeRose
for insightful comments, Igor Guskov for his remeshing code, and
Sooha Lee for application discussions. Models are courtesy Cy-
berware, Stanford University, Max Planck Institut für Computer
Graphik, and the University of Washington.

References
[1] AKLEMAN, E., AND CHEN, J. Guaranteeing 2-Manifold

Property for Meshes. In Proceedings of the Shape Modeling
International, 18–25, 1999.

[2] ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNS-
BERY, M., AND STUETZLE, W. Multiresolution Analysis
of Arbitrary Meshes. Proceedings of SIGGRAPH 95 (1995),
173–182.

[3] FLOATER, M. S. Parameterization and Smooth Approxima-
tion of Surface Triangulations. Computer Aided Geometric
Design 14 (1997), 231–250.

[4] GUSKOV, I., VIDIMČE, K., SWELDENS, W., AND
SCHRÖDER, P. Normal Meshes. Proceedings of SIGGRAPH
2000 (2000), 95–102.

[5] HUGHES, J. F. Scheduled Fourier Volume Morphing. Com-
puter Graphics (Proceedings of SIGGRAPH 92) 26, 2 (1992),
43–46.

[6] KHODAKOVSKY, A., SCHRÖDER, P., AND SWELDENS, W.
Progressive Geometry Compression. Proceedings of SIG-
GRAPH 2000 (2000), 271–278.

[7] KIMMEL, R., AND SETHIAN, J. Fast Marching Method
on Triangulated Domains. In Proceedings of the National
Academy of Science, vol. 95, 8341–8435, 1998.

[8] KRISHNAMURTHY, V., AND LEVOY, M. Fitting Smooth Sur-
faces to Dense Polygon Meshes. Proceedings of SIGGRAPH
96 (1996), 313–324.

[9] LEE, A., DOBKIN, D., SWELDENS, W., AND SCHR ÖDER,
P. Multiresolution Mesh Morphing. Proceedings of SIG-
GRAPH 99 (1999), 343–350.

[10] LEE, A. W. F., SWELDENS, W., SCHR ÖDER, P., COWSAR,
L., AND DOBKIN, D. MAPS: Multiresolution Adaptive Pa-
rameterization of Surfaces. Proceedings of SIGGRAPH 98
(1998), 95–104.

[11] MARSCHNER, S., GUENTER, B., AND RAGHUPATHY, S.
Modeling and Rendering for Realistic Facial Animation. Ren-
dering Techniques 2000: 11th Eurographics Workshop on
Rendering (2000), 231–242.

[12] TURK, M., AND PENTLAND, A. Eigenfaces for Recognition.
Journal of Cognitive Neuroscience 3, 1 (1991), 71–86.

